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We show existence of N6el order for the ground state of a system with M two- 
dimensional layers with spin 1/2 and Heisenberg antiferromagnetic coupling, 
provided M >/8. The method uses the infrared bounds for the ground state com- 
bined with ideas introduced by Kennedy, Lieb, and Shastry. 
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1. I N T R O D U C T I O N  

The existence of N6el order in the ground state of two-dimensional spin-l/2 
Heisenberg antiferromagnets remains an open problem/l~ For spin S >/1, 
Jord~o Neves and Perez ~21 adapted the techniques of Dyson e t  al. ~4~ to 
show long range order (LRO) in the ground state (actually, due to a 
numerical oversight corrected in ref. 3, the result was claimed to be valid 
only for S/> 3/2). Nevertheless, the method is not sharp enough to obtain 
order for the S =  1/2 case even for the ground state of the three-dimen- 
sional model, ts~ Later, Kennedy et  al. ~t~ improved these techniques to show 
N6el order for S >  1/2 and d>~3. 

In this note we consider the ground state of a system composed of an 
even number M of two-dimensional layers with S~> 1/2. Each layer is 
an infinite two-dimensional square lattice, so that the finite-volume 
Hamiltonian is given by 

3 

~ 1 ,  l'V~ ~ E S x ' S x + l ,  
.yea i=1 
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where A = { 1 ..... N} 2 x { 1 ..... M}, N is even, and I i is the unit vector in the 
i direction. We are interested in the thermodynamic limit N ~ o~ with fixed 
M. For  M = 1 we would have the two-dimensional model and in the limit 
M ~ oo we obtain the d = 3 system, so that our Hamiltonian interpolates 
between two and three dimensions. 

We shall take periodic boundary conditions in all directions. The 
model with open boundary conditions in the third direction, the relevant 
one when dealing with real systems of layers, cannot be controlled with our 
methods, since the use of periodic boundary conditions is essential to the 
derivation of the crucial infrared bound. On intuitive grounds one would 
expect to need a greater number of layers for N~el order to appear. 

We show the existence of N+el order provided M~> 8 for S =  1/2. 
It should be stressed that the Mermin-Wagner argument applies to 

the system under consideration, so that N6el order is absent for any 
positive temperature. This is in contrast to the three-dimensional model 
proposed and discussed in ref. 1, where the coupling constant in the third 
dimension was affected by a factor r, with 0 ~< r <~ 1, thus simulating an 
interpolation between the two- and three-dimensional models ( r = 0 ,  1, 
corresponding respectively, to two and three dimensions). For  the latter 
model N6el order was shown to hold both for the ground state and 
sufficiently low temperatures, if r >~ 0.16. 

2. THE TECHNIQUE 

Our proof  is carried out along the same lines as in Ref. 1. After 
defining 

1 
S,~= IAI,/2 ~ S3. e x p { - i q x }  

.x" ~ .4 

and gq= <SqSq>, where by < . )  we mean the expectation value in the 
ground state, we have the sum rule 

z = ~  I s(s+  I) 
- M  ~' (2re) 2 I gqd2q- 3 (2.1) 

q3 E B M 

Here the summation on q3 is taken over BM= {(2•/M)k, k =  1, 2 ..... M}. 
We also have the infrared bound ~2~ 

o<. g,, ~ f~= ( <[ [  s,,, ~ , ] ,  s_,,]> ~ '~2 
k 4Eq_ Q / (2.2) 
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where 

3 
Eq= ~, ( 1 - c o s q i )  (2.3) 

i=1 

and Q is the point (n, n, n). 
Under the assumption of absence of LRO we have the following 

formula: 

f eo I_M ~n (2n) 2 1  gq(cosq~+cosq,_+cosq3)d,_q=_ -3 (2.4) 
q3 e M 

where - e  o is the ground-state energy per site of the system. 
We then maximize the integral I over all functions g,i satisfying both 

the infrared bound (2.2) and the constraint (2.4). If I ..... the maximum 
value so obtained, is less than S(S+I)/3,  we have a contradiction, 
implying the existence of LRO. 

3. THE RESULTS 

The expectation value of the double commutator in (2.2) can be 
calculated explicitly and equals 

3[(2 --cos ql - cos %) Pl + (1 - c o s  q3) 1)3] 

where 

Pt = --(S.,." S,.+/~) and p3=  - ( S , . "  S.,-+t~) 

It should first be remarked that p~ and P3 are nonnegative. This result 
is a Griffith inequality of the first type for the system. Its proof can be 
reduced to the proof given by Ginibre ~6) of a class of such inequalities for 
quantum ferromagnetic spin systems. This is achieved by performing a 
rotation on the system by an angle n around the third spin direction, on 
the even sublattice. This transforms the Hamiltonian of the system into 

3 

 MN=E E( ' ' ' + s ]  . . . .  .S,.+l,) -S,..S,.+,,-S-.,..S-,.+,, . 
.yea i= I 

The method used in the proof of the Corollary of Theorem 5, p. 110, of 
ref. 6 applies to the expectation values in the ground state of the modified 
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system (as the sign of the coupling in the third direction is irrelevant), so 
that for any pair of sites x and y 

1 I ~ ":' i (S,.S;.+ S-,S'.,,) >10 

Remark. Actually Ginibre's proof  is given for a positive-temperature 
state, but the inequality clearly survives the limit ,6---, oo. 

Undoing the transformation, we obtain for the original system and for 
any pair of nearest neighbor sites x and y 

(s,s,.+s-,.s-,.> <<.o 

Using the isotropy in the spin variable, we finally get, for any pair of 
nearest neighbor sites x and y 

( S , ' S , , )  i i ~ , ~ 3 = ( S ,S ,, + S-,.S~ �9 + s ~ , s , , )  <<.o 

At this point our method departs from the one used in ref. I, as we 
have not been able to estimate p~ and P3 in terms of the ground state 
energy density e0. So we consider separately two situations: (1) 
pl<~eo/4, p3<~eo; and (2) p~<~eo/2, p3<~eo/2. One of these two cases 
always holds, since eo = 2p, + P3, P l >i 0, and t03 >/0. We shall compute I ..... 
for each case. The conclusion follows if we get I , , , ,  < S(S + 1 )/3 in both 
cases. 

As in ref. 1, the maximum of I for all g,~ subject to (2.2) is attained by 

gq = f,/z(cos ql +cos  q2 +cos  q~ <~)  

where cr is a positive constant and Z( ' )  = 1 when condition ( .)  is true and 
zero otherwise. We perform a numerical calculation in order to determine 
the value of ct so that the constraint (2.4) is satisfied. A lower bound for eo 
can be obtained by using the N6el state as a variational trial ground state. 
For our system it is given by eo>~e~oN~=0.75. Replacing eo by e~ N~, we 
compute the value of ~cN) for M = 8 :  

Case 1. ct~N)=0.71160. 

Case 2. occl N) = 0.72056. 

For both of these values the integral I ..... is calculated and shown to 
be less than S(S+ 1)/3: 

Case 1. _(N) =0.24388.  t]*" n l  a x ,  1 

Case 2. ~~N) --0.24650. 
~ m a x .  2 - -  
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~rq~ and I . . . .  2~<I~mN~x -~, By monotonicity we have that I ..... t~<I . . . .  I , �9 , _  

implying I ...... < S(S + 1 )/3, which concludes the proof. 
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